首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   7篇
  国内免费   4篇
测绘学   3篇
大气科学   17篇
地球物理   46篇
地质学   61篇
海洋学   27篇
天文学   40篇
综合类   1篇
自然地理   15篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   9篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   8篇
  2012年   5篇
  2011年   22篇
  2010年   4篇
  2009年   7篇
  2008年   12篇
  2007年   2篇
  2006年   7篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1932年   1篇
排序方式: 共有210条查询结果,搜索用时 34 毫秒
91.
92.
Arctic permafrost coasts are sensitive to changing climate. The lengthening open water season and the increasing open water area are likely to induce greater erosion and threaten community and industry infrastructure as well as dramatically change nutrient pathways in the near-shore zone. The shallow, mediterranean Arctic Ocean is likely to be strongly affected by changes in currently poorly observed arctic coastal dynamics. We present a geomorphological classification scheme for the arctic coast, with 101,447?km of coastline in 1,315 segments. The average rate of erosion for the arctic coast is 0.5?m? year?1 with high local and regional variability. Highest rates are observed in the Laptev, East Siberian, and Beaufort Seas. Strong spatial variability in associated database bluff height, ground carbon and ice content, and coastline movement highlights the need to estimate the relative importance of shifting coastal fluxes to the Arctic Ocean at multiple spatial scales.  相似文献   
93.
The primary crater population on Mercury has been modified by volcanism and secondary craters. Two phases of volcanism are recognized. One volcanic episode that produced widespread intercrater plains occurred during the period of the Late Heavy Bombardment and markedly altered the surface in many areas. The second episode is typified by the smooth plains interior and exterior to the Caloris basin, both of which have a different crater size-frequency distribution than the intercrater plains, consistent with a cratering record dominated by a younger population of impactors. These two phases may have overlapped as parts of a continuous period of volcanism during which the volcanic flux tended to decrease with time. The youngest age of smooth plains volcanism cannot yet be determined, but at least small expanses of plains are substantially younger than the plains associated with the Caloris basin. The spatial and temporal variations of volcanic resurfacing events can be used to reconstruct Mercury's geologic history from images and compositional and topographic data to be acquired during the orbital phase of the MESSENGER mission.  相似文献   
94.
Analysis of images obtained by the MESSENGER spacecraft during its three flybys of Mercury yields a new estimate for the planet's mean radius of 2439.25±0.69 km, in agreement with results from Mariner 10 and Earth-based observations, as well as with MESSENGER altimeter and occultation data. The mean equatorial radius and polar radius are identical to within error, suggesting that rotational oblateness is negligible when compared with other sources of topography. This result is consistent with the small gravitational oblateness of the planet. Minor differences in radius obtained at different locations reflect regional variations in topography. Residual topography along three limb profiles has a dynamic range of 7.4 km and a root-mean-square roughness of 0.8 km over hemispherical scales. Following MESSENGER's entry into orbit about Mercury in March 2011, we expect considerable additional improvements to our knowledge of Mercury's size and shape.  相似文献   
95.
We present a global survey of candidate pyroclastic deposits on Mercury, derived from images obtained during MESSENGER flybys 1–3 that provided near-global coverage at resolutions between 5 and 0.5 km/pixel. Thirty-five deposits were identified and characterized and are located principally on the floors of craters, along rims of craters, and along the edge of the Caloris basin. Deposits are commonly centered on rimless, often irregularly shaped pits, mostly between 5 and 45 km in diameter. The deposits identified are generally similar in morphology and absolute reflectance to lunar pyroclastic deposits. Spectrally the deposits appear brighter and redder than background Mercury terrain. On the basis of the available coverage, the candidate pyroclastic deposits appear to be essentially globally distributed. The diameters of the deposits, when mapped to lunar gravity conditions, are larger than their lunar counterparts, implying that more abundant volatiles were present during the typical eruptive process than on the Moon. These observations indicate that if these deposits resulted from hawaiian-style eruptions, the volatile contents required would be between ~1600 and 16,000 ppm CO or an equivalent value of H2O, CO2, SO2, or H2S (for a more oxidizing interior), or N2, S2, CS2, S2Cl, Cl, Cl2, or COS (for a more reducing interior). These abundances are much greater than those predicted by existing models for Mercury's formation. An apparent lack of small deposits, compared with the Moon, may be due to resolution effects, a topic that can be further assessed during the orbital phase of the MESSENGER mission. These results provide a framework within which orbital observations by MESSENGER and the future BepiColombo mission can be analyzed.  相似文献   
96.
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system.  相似文献   
97.
In this study we document how model biases in extratropical surface wind and precipitation, due to ocean–atmosphere coupling, are communicated to the equatorial Pacific thermocline through Pacific Subtropical Cell (STC) pathways. We compare the simulation of climate mean Pacific Subtropical Cells (STCs) in the NCAR Community Climate System Model version 3 (CCSM3) to observations and to an uncoupled ocean simulation (the ocean component of the CCSM3 forced by observed wind stress and surface fluxes). We use two versions of the CCSM3 with atmospheric resolution of 2.8° (T42) and 1.4° (T85) to investigate whether the climate mean STCs are sensitive to the resolution of the atmospheric model.Since STCs provide water that maintains the equatorial thermocline, we first document biases in equatorial temperature and salinity fields. We then investigate to what extent these biases are due to the simulation of extratropical–tropical water mass exchanges in the coupled models. We demonstrate that the coupled models’ cold and fresh bias in the equatorial thermocline is due to the subduction of significantly fresher and colder water in the South Pacific. This freshening is due to too much precipitation in the South Pacific Convergence Zone. Lagrangian trajectories of water that flows to the equatorial thermocline are calculated to demonstrate that the anomalously large potential vorticity barriers in the coupled simulations in both the North and South Pacific prevent water in the lower thermocline from reaching the equator. The equatorial thermocline is shown to be primarily maintained by water that subducts in the subtropical South Pacific in both the coupled and uncoupled simulations. It is shown that the zonally integrated transport convergence at the equator in the subsurface branch of the climate mean STCs is well simulated in the uncoupled ocean model. However, coupling reduces the net equatorward pycnocline transport by 4 Sv at 9°S and 1 Sv at 9°N. An increase in the atmospheric resolution from T42 to T85 results in more realistic equatorial trades and off-equatorial convergence zones.  相似文献   
98.
Acoustic signals received by platform mounted sonar arrays can be spatially processed to enhance the detection of targets in the presence of both ambient and platform generated (self) noise. Ambient noise in the ocean, such as that due to distant shipping or biological choruses, are known to be spatially correlated. The platform generated noise will be of near-field origin and may not be received by all elements in the array. In this paper we investigate the performance of the minimum variance distortionless response (MVDR) beamformer and the recently introduced Fourier integral method (FIM) and compare their performances with the conventional beamformer. Real passive sonar data, obtained from a platform mounted sparse linear array of hydrophones, is used to study the performance of the beamformers in a typical sonar environment. It is shown that in the absence of self noise, when the array is accurately calibrated the MVDR beamformer will perform very well, but when sensor gain or phase errors are present the performance of the MVDR beamformer is degraded. Further, the MVDR beamformer is unable to reject the self noise which is not "seen" by the entire array. FIM however seems to perform well and a modified version of FIM, which we call weighted FIM (WFIM), is shown to perform better and is at worst comparable to a well calibrated MVDR beamformer  相似文献   
99.
Based on TIDI mesospheric wind observations, we analyzed the semidiurnal tide westward zonal wavenumber 1 and 2 (SW1 and SW2) component seasonal, inter-annual variations, and possible sudden stratospheric warming (SSW) related changes. Major findings are as follows: (1) The SW1 has a peak near the South Pole during the December solstice and near the North Pole during the March equinox. (2) The SW2 peaks at 60S and 60N mostly during winter solstices. The SW2 also peaks during late summer and early fall in the northern hemisphere. (3) The QBO effect on the semidiurnal tide is much weaker than that on the diurnal tide. The March equinox northern SW1 zonal amplitude appears to be stronger during the westward phase of the QBO, which is opposite of migrating diurnal tide QBO response. (4) Possible SSW event related changes in the semidiurnal tide are significant but not always consistent. Enhancements in the mid-latitude SW2 component during SSWs are observed, which may be related to the increase of total ozone at mid and high latitudes during SSW events. TIDI observations also show a decrease in the SW2 in the opposite hemisphere during a southern SSW event in 2002. Small increases in the high latitude SW1 in both hemispheres during the 2002 southern SSW event were recorded.  相似文献   
100.
Except for the fringing reef, the limestones of Christmas Island in the Indian Ocean are of Late Eocene (Tertiary “b") and Early Miocene (Tertiary “e” to “f") age. The Upper Eocene limestone is an algal limestone containing Discocyclina, Nummulites, and Heterostegina. The Lower Miocene limestone is an algal limestone containing in its lower part species of Lepidocyclina (Eulepidina) followed by Miogypsinoides dehaarti. Miogypsinoides dehaarti extends into the zone of Flosculinella bontangensis. No rocks younger than Burdigalian were identified other than on the fringing reef which contains an assemblage of Pliocene‐Pleistocene Foraminifera.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号